Robust Detection of Sono
نویسنده
چکیده
A sonorant detection scheme using Mel-frequency cepstral coefficients and support vector machines (SVMs) is presented and tested in a variety of noise conditions. Adapting the classifier threshold using an estimate of the noise level is used to bias the classifier to effectively compensate for mismatched training and testing conditions. The adaptive threshold classifier achieves low frame error rates using only clean training data without requiring specifically designed features or learning algorithms. The frame-by-frame SVM output is analyzed over longer time periods to uncover temporal modulations related to syllable structure which may aid in landmark-based speech recognition and speech detection. Appropriate filtering of this signal leads to a representation which is stable over a wide range of noise conditions. Using the smoothed output for landmark detection results in a high precision rate, enabling confident pruning of the search-space used by landmark-based speech recognizers.
منابع مشابه
Identification and Robust Fault Detection of Industrial Gas Turbine Prototype Using LLNF Model
In this study, detection and identification of common faults in industrial gas turbines is investigated. We propose a model-based robust fault detection(FD) method based on multiple models. For residual generation a bank of Local Linear Neuro-Fuzzy (LLNF) models is used. Moreover, in fault detection step, a passive approach based on adaptive threshold is employed. To achieve this purpose, the a...
متن کاملRobust Fault Detection on Boiler-turbine Unit Actuators Using Dynamic Neural Networks
Due to the important role of the boiler-turbine units in industries and electricity generation, it is important to diagnose different types of faults in different parts of boiler-turbine system. Different parts of a boiler-turbine system like the sensor or actuator or plant can be affected by various types of faults. In this paper, the effects of the occurrence of faults on the actuators are in...
متن کاملA robust wavelet based profile monitoring and change point detection using S-estimator and clustering
Some quality characteristics are well defined when treated as response variables and are related to some independent variables. This relationship is called a profile. Parametric models, such as linear models, may be used to model profiles. However, in practical applications due to the complexity of many processes it is not usually possible to model a process using parametric models.In these cas...
متن کاملLow Power Resistive Oxygen Sensor Based on Sonochemical SrTi0.6Fe0.4O2.8 (STFO40)
The current paper reports on a sonochemical synthesis method for manufacturing nanostructured (typical grain size of 50 nm) SrTi0.6Fe0.4O2.8 (Sono-STFO40) powder. This powder is characterized using X ray-diffraction (XRD), Mössbauer spectroscopy and Scanning Electron Microscopy (SEM), and results are compared with commercially available SrTi0.4Fe0.6O2.8 (STFO60) powder. In order to manufacture ...
متن کاملRobust Model- Based Fault Detection and Isolation for V47/660kW Wind Turbine
In this paper, in order to increase the efficiency, to reduce the cost and to prevent the failures of wind turbines, which lead to an extensive break down, a robust fault diagnosis system is proposed for V47/660kW wind turbine operated in Manjil wind farm, Gilan province, Iran. According to the acquired data from Iran wind turbine industry, common faults of the wind turbine such as sensor fault...
متن کاملComparison of quality and cost-effectiveness in the evaluation of symptomatic cholelithiasis with different approaches to ultrasound availability in the ED.
Ultrasound is the imaging study of choice for the detection of gallstones, but ultrasound through medical imaging departments (MI Sono) is not readily available on an immediate basis in many emergency departments (EDs). Several studies have shown that emergency physicians can perform ultrasound themselves (ED Sono) to rule out gallstones with acceptable accuracy after relatively brief training ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005